

O2-T1: MACHINA curriculum outline

Funded by the Erasmus+ Programme of the European Union

Project details	
Project acronym:	MACHINA
Project name:	Machine Learning Skills for ICT Professionals
Project code:	2020-1-FR01-KA202-080386
Document Information	
Document ID name:	MACHINA_02-T1_Report_on curriculum outline
Document title:	Report on curriculum outline
Output Type:	Intellectual Output
Date of Delivery:	02/11/2021
Activity type:	Learning units' specifications
Activity leader:	GEEKSACADEMY
Dissemination level:	Public

Document History

Versions	Date	Changes	Type of change	Delivered by	
Version 1.0	03/09/2021 Initial document			GEEKS	
Version 1.1	15/09/2021	Finalized	Clarifications, typos,	GEEKS	
	10/07/2021	document	syntax	GEERO	
			Edit of LU specs		
Version 1.2	02/11/2021	Review	accordingly to final	GEEKS	
			learning materials		

Disclaimer

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The project resources contained herein are publicly available under the <u>Creative Commons license 4.0</u> <u>B.Y.</u>

TABLE OF CONTENTS

1	INT	TRODUCTION	.5
2	ME	THODOLOGICAL APPROACH	.7
	2.1	Methods to design learning units	.7
	2.2	Grouping criteria	12
3	CU	RRICULUM OUTLINE	13
4	LEA	ARNING UNIT SPECIFICATIONS	14

ACRONYMS AND ABBREVIATIONS

- ML Machine Learning
- AI Artificial Intelligence
- **DL** Deep Learning
- E-CF European e-Competence Framework
- EU European Union
- EQF European Qualification Framework
- ICT Information and Communications Technology
- I-VET Initial Vocational Education and Training
- M. Sc. Master of Science
- MOOC Massive Open Online Course
- NN Neural Network
- OER Open Educational Resources
- VET Vocational Education and Training

1 INTRODUCTION

The project's second Intellectual Output includes the development of a modular curriculum structure (syllabus) drawing on labour market analysis and skill needs evidence (O1) to be used by VET providers and employers for training ICT workers in Machine Learning (ML) methods, techniques, and practical applications.

The partnership has opted for a learning outcomes approach in the curriculum design, as recommended and detailed in CEDEFOP's European handbook on "Defining, writing, and applying learning outcomes", with clear references to the appropriate EQF level. This approach will help to achieve a better match between labour market skill needs and VET provision, and facilitate the recognition of relevant skills across the EU.

The first step towards the creation of the curriculum comprises the clustering of the defined learning outcomes (O1-T4) into self-standing, modular learning units along with the definition of unit specifications (learning objectives, weighting of outcomes, credits, prerequisites, assessment criteria) according to ECVET principles.

Each learning unit will be designed to consist of a unique set of learning outcomes, defined in terms of knowledge, skills and competences, which can be assessed and validated in a consistent and coherent approach. Each unit will be also assigned with ECVET credit points to serve as a point of reference for a future, accredited qualification on Machine Learning for ICT professionals.

This report defines the structure and specifications of the MACHINA curriculum, presenting the methodology followed by the partnership to create a VET programme for relevant occupational groups in the ICT field. The programme will be offered as a market ready, customisable learning solution that can be directly used (entirely or components of it) by VET providers and employers for Machine Learning training provision,

This deliverable is the core for the achievement of the MACHINA objectives, marking the fulfillment of a key milestone and paving the way for the development of Open Educational Resources.

The document is structured as follows:

• Section 2 presents the methodological approach for the grouping of learning outcomes into learning units is presented. This includes: (i) the description of the methodology employed for designing learning units, (ii) an overview of grouping criteria and (iii) the presentation of the MACHINA learning units (incl. specifications).

- Section 3 provides an overview of the MACHINA curriculum, discussing curriculum details such as course objectives, target audience, recommended background and entry requirements, duration, and EQF level.
- Section 4 defines the specifications of individual learning units.

2 METHODOLOGICAL APPROACH

This section presents the methodological approach employed by the partnership for the design of curriculum structure, discussing the criteria used for grouping the defined learning outcomes (O1-T4) into modular learning units.

2.1 Methods to design learning units

While many countries have made significant progress in using learning outcomes to describe and present their qualifications to citizens, existing approaches differ in length and focus and make understanding and comparison difficult. Agreeing on a set of common principles for presenting qualifications, for example to be used in databases and in qualification supplements, would make it easier for learners, employees, and employers to understand the content and profile of a particular qualification. These common principles would not be to promote a harmonization of qualifications but should support end-users, be these individual citizens or employers, to make informed judgements and choices in diverse and complex education and training systems.

Units of learning outcome should be described in accordance with a common conceptual framework to allow a reciprocal understanding of the qualification and allow to an objective comparison between countries.

For the purposes of the project MACHINA and in accordance of CEDEFOP guidelines (www.cedefop.europa.eu), it is considered that a *unit of learning outcome* should be composed by the following components:

♦ Title of the Qualification to which the Unit relates

♦ EQF Level

The European Qualifications Framework (EQF) is a common European reference framework whose purpose is to make qualifications more readable and understandable across different countries and systems. Covering qualifications at all levels and in all sub-systems of education and training, the EQF provides a comprehensive overview over qualifications in the 39 European countries currently involved in its implementation. In close cooperation with the European Commission, Cedefop provides analytical and coordination support for the implementation of the EQF and carries out a number of comparative studies and analysis on issues related to the implementation of the framework at EU, national and sectoral level.

Source: <u>https://www.cedefop.europa.eu/en/events-and-projects/projects/european-qualifications-</u> <u>framework-eqf</u>

♦ Title of the Unit

The title of the Unit should be as short as possible and should reflect the importance of the Learning Outcome(s) for the labour market. The title should reflect the global learning outcomes that are contained in the unit, and not focusing only on some of them.

♦ Learning Outcomes

Learning outcomes are statements that reflect/present the main technical tasks that the learner must perform to prove a specific output. Learning outcomes are expressed in a simple, short, and objective statement, beginning by the action verb that indicates the main technical task that the learner has to perform, conjugated in the infinitive. Learning outcomes are expressed in the form of knowledge, skills & competences statements.

Knowledge

Knowledge is the theoretical and/or factual body of facts, principles, theories, and practices that are related to a field of work or study. Knowledge is described in terms of what the learner knows and understands.

Skills

Skills are cognitive or practical abilities to apply knowledge and use know-how to complete tasks and solve problems. Skills are described in terms of what the learner can do.

Competence

A competence is considered the proven ability to use knowledge, skills and personal, social and/or methodological abilities at work or in academic situations and in professional and personal development. Competences are described in terms of what the learner does, applying knowledge, skills, and proving the following abilities: attitudes, personal, social and methodological.

♦ Performance Criteria

Performance criteria are the quality requirements associated with performance and the quality standards that ensure that the individual acts competently (required quality for achievements). The performance criteria are specifically associated with learning outcomes as expressed in the form of knowledge, skills, and competence. Performance criteria are measurable, observable and provide qualitative important information on the expected performance.

♦ Outputs

Outputs are the results, the obtained products, or the proof. The outputs are directly associated with learning outcomes and performance criteria, being the observable result of the performance. Outputs are

Co-funded by the Erasmus+ Programme of the European Union

described in a clear, objective and short manner, expressing the main nuclear professional proof for a given qualification.

♦ Code (if applicable)

The title of the Unit should contain the national code used in the national qualifications' framework (when applicable). In cases where the work of reformulating the qualification for learning outcomes implied reformulating the description of the existing unit for a focus on the results of the learning process, rather than the existing description focused on the inputs and learning process, without any alteration in terms of the expected results of the learning process that would be achieved by a learner with a successful evaluation, the code existing in the national system is maintained. In cases where the reformulation of the qualification also entailed, for example, the dismantling of modules into several units of learning outcome, the code is assigned as follows: assignment of the national code in which these learning outcomes were contained, followed by an asterisk and an integer (1, 2, 3, ...), assigned in ascending order of the number of units of learning outcome in which the original module was disassembled.

♦ Number of Hours

Although the number of hours of the Unit of Learning Outcome is of no relevance to the *matching process*, the number of hours is an indicator that helps to balance the size of the Unit between countries, and it is a fundamental indicator for the assignment of ECVET Points.

♦ ECVET Credit Points

In order to have a comprehensive view of the overall weight of learning outcomes in a qualification and the relative weight of Units in relation to the qualification, each Unit should contain the indication of the number of ECVET Points allocated to the Unit of Learning Outcome. The allocation of ECVET Points to Units of Learning Outcome is crucial for the validation and recognition processes of Units when the Learning Outcomes are acquired abroad.

Principles to be applied

The following principles should be used to agree on common learning outcomes:

- 1. It should be agreed among sending and receiving organizations that learning outcomes will consist of knowledge, skills and competence;
- 2. Both sending and receiving organizations should not replace existing learning outcomes descriptions as used at national or institutional level for qualifications, curricula or other purposes;
- 3. Sending partner should decide what learning outcomes their learners must achieve during the period abroad;

- It is very important to agree on a predefined structure and syntax. In the Project *MACHINA* it was decided to use the following structure to define learning outcomes:
- to describe knowledge, use the phrase "the learner knows and understands ..."
- to describe skills, use the phrase "the learner is able to ..."
- to describe competences, use the phrase "the learner does ..."

It must be supported by a standardized terminology, including lists of action verbs.

In the Project *MACHINA* it was decided to use the structure presented in *Image 1* to define Units of Learning Outcome. The MACHINA project uses the learning outcome approach to design the curriculum and to connect the developed VET program with the European reference tools (EQF, ECVET). As the course delivery is different in various countries, this method potentially contributes to the alignment of the common content related to the blockchain technology education and required skills of the course learners. As shown in Figure 1, the method for designing learning units consists of 3 steps: (1) group learning outcomes; (2) test learning units; and (3) update learning units.

Figure 1: Method for Designing Learning Units Grouping learning units.

The input to the first step is (i) the evidence-based learning outcomes, specified in Deliverable O1-T1 and (ii) the grouping criteria, discussed on Section 2.2. This step involves the elaboration of the defined learning outcomes into 6 learning units as illustrated in Table 2.

LEARNING UNIT	TITLE	NUMBER OF LESSONS	Duration (teaching and sudying hours)	EQF level
1	Machine Learning essentials for ICT professionals	4	83h	5
2	Mathematics foundations	5	80h	5
3	Machine Learning algorithms, Programs and Protocols	6	100h	5
4	Deep Learning (Advanced)	4	80h	5
5	Communicating the merits, challenges, and implications of Machine Learning technology to customers and within own organization	5	83h	5
6	Legislation, Ethics, Project Management related to Machine Learning	4	83h	5

Table 2

Learning units will be further broken down into lessons to cover the entire spectrum of theoretical knowledge and (practical) skills and competences required to work with ML methods and applications. A lesson should include the following items: a title, the learning unit of which the lesson is part of, the list of topics of the learning unit content, prerequisites, learning materials, planned duration of the lesson and references. Training materials will be created and if suitable reused to support learning on the technical components and practical applications, such as lecture notes, slide presentations, case studies, FAQs.

The assessment of learning outcomes means methods and processes used to establish the extent to which a learner has in fact attained knowledge, skills and competences. In order to determine whether the learner has acquired the proposed knowledge, skills and competences and to provide learners with the opportunity to evaluate the extent to which they have attained the desirable knowledge and skills, assessment materials for each learning unit has been developed.

2.2 Grouping criteria

The learning outcomes was grouped following criteria of generality, graduality and interdependence. The grouping criteria followed consolidated educational approach based on topics' connection and concepts' structuring. Each learning unit has been divided into a set of coherent but, as much as possible, independent lessons to be used or composed freely. At this purpose we didn't avoid topics' overlapping. The main purpose of this framework is to provide support in grouping common Learning Outcomes into Nuclear Units as a step in the process of the transfer, recognition and certification of learning outcomes acquired by I-VET learners during their participation in European mobility programs.

In the context of the project MACHINA, Units of Learning Outcome are understood as a coherent set of knowledge, skills and competence needed to put into practice key realizations or key tasks, which are interconnected in a coherent, comprehensible, and logical set of key technical outcome, observable and verifiable in outputs.

The main rule for grouping *learning outcomes* into *units* is the coherence, interconnectivity, reciprocity and interdependence of knowledge, skills and competence associated with each *key technical outcome* among each other. The following criteria are considered to group *learning outcomes*: relation of *learning outcomes* to the same set of key technical tasks; relation of *learning outcomes* to the same product/outcome; relation of *learning outcomes* to the same production technique.

Each *unit of learning outcome* is composed of one or more *key technical outcome* which are interconnected and led to observable and evaluable *outputs*.

Whenever possible, *units of learning outcome* should be designed in such a way that can be achieved as independently as possible of other *units*, so that *learning outcomes* in a qualification should be assessed only once.

3 CURRICULUM OUTLINE

The curriculum has been composed in a way to cover horizontally the various aspects (scientific, technical, ethical, communicative) and topics of the machine learning field. This is coherent with course objectives; to give basic operative skills and general knowledge of machine learning theory and practice to workers not academically trained in the field. Consider the fact that if today basic information technology knowledge and skills for workers in the service industry are basically the use of the "office packet" (emailing, text processing, calculus sheets) in the feature knowledge and basic use of ML algorithms will be probably necessary. The curriculum has been designed for a general audience, so that independently from the individual technical or scientifical entry level, everyone could choose learning units accordingly to personal or company interests or educational needs. The entry level is post-graduation in any course with basic mathematical courses. The duration of the course will last 3-4 months, considering 2 hours per day of learning activities. The targeting EQF level is 5-6.

LEARNING UNIT SPECIFICATIONS

	Learning Unit 1: ML essentials for ICT professionals				
Unit description	Defines the essential M	IL characteristics and address	es the fundamental feat	cures of ML applications.	
	- Get an overview of the ML characteristic and its different algorithms.				
Learning	- Understand the conce	ept behind ML and how to dete	ect patterns from data.		
objectives	- Identify different type	es of applications that use the	ML algorithms.		
	1. Introduction to ML.				
Lossons	2. Where to apply ML.				
Lessons	3. Machine learning an	d Data processing.			
	4. Example ML application	tions.			
	Lesson 1	Lesson 2	Lesson 3	Lesson 4	
	- Understand the	- Types of problems that	- Understand Data	- Understand the	
	theoretical principles	Machine Learning	preprocessing and	elements of ML in	
	of Machine Learning	algorithms can solve	visualization	applications.	
Learning	- Get a general	nowadays (ex. regression	methods.	- Analyze some existing	
outcomes	overview of the	and classification)		ML applications	
	different machine	- How to solve the		according to a given	
	learning algorithms.	problems using various		context.	
		Machine Learning			
		techniques.			
EQF level	5				
ECVET credits	5				
Duration	83 hours				
Recommended background	Basic understanding of Linear Algebra, Background on computer science.				
Prerequisites	Basic knowledge of Python language				
	21 pages with	lecture notes			
Learning	4 presentation	n files with 66 slides in total			
materials	• 10 Questions a	and Answers			
	• 2 Case Studies				
Assessment	2 practical exe	ercises on Juoyter IPython Not	eBook with indicative s	olutions	
materials	• 10 multiple ch	oice questions			

Learning Unit 2: Mathematical Foundations							
Unit description	Defines the mathem	Defines the mathematical foundation required for writing programs and algorithms for ML and AI.					
	To break down the	To break down the difficult mathematical concepts into easier one to understand concepts.					
Learning	To focus on mathematical concepts and algorithms to get full understanding of ML and AI techniques						
objectives	and methodologies.						
	1. Set, Functions, Re	lations					
	2. Linear Algebra						
Lessons	3. Probability Theor	у					
	4. Statistics						
	5. Computation theo	ory					
	Lesson 1	Lesson 2	Lesson 3	Lesson 4	Lesson 5		
	-To know the	-To know the	-To know the	-To know the	-To know the		
	definition of sets	definition of	frequentist	definition of	concept of		
	and basic sets'	vector space and	definition of	population and	algorithm		
	operations	basic vector	probability of an	sample	-To be able to		
	-To know	operations	event	-To know the	write a simple		
	definition of	-To know the	-To know the	meaning and to be	algorithm as a		
	function and basic	definition of	definition of	able to compute	flow chart		
	functions'	metric	probability as	mean, median,	-To know the		
	operations	-To know the	ratio between	variance, standard	basics of		
Learning	-To know	difference	favorable	deviation of a	procedural		
outcomes	definition of	between scalar,	outcomes on total	population	programming		
	relation,	vector, tensor	outcomes	-To know the	language		
	equivalence	-To know how	-To be able to	meaning of	(operations,		
	relation, partition	calculate the	calculate easy	covariance and	conditions, if-else,		
	of a set	Hadamard	probabilities base	correlation	while, for)		
	-To know the	product	on basic	-To know the	-To be able write a		
	concept of local	-To know the	combinatorics	meaning of	simple algorithm		
	minima and	definition of the	-To know the	maximum	in a programming		
	derivatives of a	gradient of a	definition of join	likelihood	language (Python)		
	function	function	probability	estimator	-To know the		
					basic data		

Г

Learning Unit 2: Mathematical Foundations					
	-To be able to		-To know the	-To know the	structures (sets,
	compute an		definition of	meaning of	lists, associative,
	approximation of		independent	univariate and	arrays)
	derivative at a		events	multi variate	-To know the
	point using deltas		-to know the	linear regression	concept of classes,
			definition of	and how to	instances,
			conditional	compute the	methods
			probability	parameters	
			-To know the	-To know the	
			Bayes Theorem	definition of	
				correlation matrix	
				-To know the	
				meaning of	
				logistic regression	
				-To know the	
				definition of	
				precision, recall,	
				confusion matrix	
EQF level	5				
ECVET credits	4.8				
Duration	80 hours				
Recommended background	None				
Prerequisites (in terms of software)	Knowledge of a programming language				
	• 26 pages w	ith lecture notes			
Learning	• 1 presentat	ion file with 15-20 sli	des		
materials	15 Question	ns and Answers			
	• 2 Case Stud	ies			
Assessment	2 practical	exercises			
materials	• 15 multiple choice questions				

Learning Unit 3: ML Algorithms, Programs and Protocols								
Unit	Defines the found	Defines the foundational machine learning models and understands how to select the suitable ML model for a						
description	given problem an	given problem and how to implement it in one of the available programming languages.						
	- Foundational un	- Foundational understanding of machine learning models.						
	- Understand som	e of the essential m	achine learning alg	orithms and how to	o evaluate the pe	rformance of		
Learning	them.							
objectives	- Identify differen	t programming lang	guages and framew	orks that support t	he implementati	on of machine		
	learning algorithm	ns.						
	1. Machine learning by linear models							
	2. Supervised lear	ning						
	3. Unsupervised le	earning						
Lessons	4. Semi supervise	d learning						
	5. Programming la	anguages and frame	eworks for Machine	e learning algorithm	IS			
	6. Best practices for ML							
	Lesson 1	Lesson 2	Lesson 3	Lesson 4	Lesson 5	Lesson 6		
	- Get an	- Get an	- Get an	- Get an	- Obtain an	- Understand		
	overview of ML	overview of	overview of	overview of	overview of	best practices		
	linear models.	supervised	unsupervised	semi-	the different	for building		
	- Identify the	learning and its	learning and its	supervised	programming	machine		
	different ML	utility.	utility.	learning and its	languages	learning		
Learning	linear models'	- Identify the	- Identify the	utility.	and	applications.		
outcomes	algorithms and	different	different	- Identify the	frameworks	- Identify		
	implementation.	algorithms of	algorithms of	different	available for	Hyperparameter		
		supervised	unsupervised	algorithms of	ML.	Tuning		
		learning and	learning and	semi-		methods.		
		implementation.	implementation.	supervised				
				learning, and				
				implementation.				
EQF level	5							
ECVET credits	6							
Duration	100 hours							
Recommended background	Basic understand	ing of Linear Algebr	a, and probability t	heory. Learning Un	it 1 and 2			

	Learning Unit 3: ML Algorithms, Programs and Protocols				
Prerequisites (in terms of software)	Basic knowledge of Python language				
Learning materials	 18 pages with lecture notes 6 presentation files with 112 slides in total 15 Questions and Answers 2 Case Studies 				
Assessment materials	 3 practical exercises on Juoyter IPython NoteBook with indicative solutions 15 multiple choice questions 				

Learning Unit 4: Deep Learning (Advanced)							
	The content of this unit is	The content of this unit is a general introduction to basic concepts relating with the most common					
Unit description	neural networks models u	sed in real life, i.e.: Multila	ayer Perceptron, Convol	utional Networks,			
	Recurrent Networks, Rest	ricted Boltzmann Machine	es				
	To understand the import	ant details about deep neu	ural networks and get to	know of different deep			
Learning	neural network architectu	ire.					
objectives	To identify the potential o	f deep learning in differen	nt applications such as na	atural language processing,			
	computer vision, or recom	mendation systems.					
	1. Multilayer Perceptron (MLP)					
-	2. Convolutional Neural N	etworks (CNN)					
Lessons	3. Recurrent Neural Netwo	orks (RNN)					
	4. Autoencoders (AE), Res	tricted Boltzmann Machir	nes (RBM)				
	Lesson 1	Lesson 2	Lesson 3	Lesson 4			
	-To know the definition	-To know basic CNN	-To know the	-To know the definition of			
	of MLP	filters	definition of RNN	AE			
	-To know when to use	-To know when to use	-To know what a	-To know the definition of			
	MLP model	CNN model	sequence model is	RBM			
	-To know definition of	-To know basic CNN	-To know when to	-To be able to implement,			
	different activation	architectures	use RNN model	train, tuning and validate			
	functions	-To know basic	-To know basic RNN	a AE model using Keras			
	-To know basic cost	concepts about	architectures and	API			
	functions' definition	transfer learning, end-	modules (GRU,	-To be able to implement,			
	-To know common	to-end learning, multi-	LSTM)	train, tuning and validate			
Learning	gradient descent	task learning	-To be able to	a RBM model using Keras			
outcomes	techniques to minimize	-To be able to	implement, train,	API			
	cost functions	implement, train,	tuning and validate a				
	-To know general	tuning and validate a	RNN model using				
	principles of back	CNN model using	Keras API				
	propagation algorithm	Keras API					
	-To know how to tune	-To be able to import a					
	model fitting	pre-trained CNN to					
	-To be able to	solve specific problem					
	implement, train, tuning						
	and validate a MLP						
	model using Keras API						

	Learning Unit 4: Deep Learning (Advanced)			
EQF level	5			
ECVET credits	4.8			
Duration	80 hours			
Recommended background	Learning unit 1,2,3			
Prerequisites (in terms of software)	Knowledge of the basics of Python programming language			
Learning materials	 23 pages with lecture notes 4 presentation files with 66 slides in total 18 Questions and Answers 2 Case Studies 			
Assessment materials	 2 practical exercises 18 multiple choice questions 			

Learning Unit 5: Communication							
	Through this course, each	n participant builds on thei	r communication strengths	s and learn new and			
	interesting techniques to add to their skillset.						
	This course will empowe	r the participant to become	e an advanced communicat	or at workplace.			
Unit description	Each participant will lear	n the elements of commun	ication and be able to flex e	each one to meet			
	objectives.						
	The information and prac	ctice gained through this co	ourse will help bridge the g	ap in participants			
	current verbal skills.						
	Get familiar with	basic communication prin	ciples and practices.				
	• Understand the o	components of effective cor	nmunication and ways for	using Machine Learning			
Learning	in Communicatio	ons.		88			
objectives	Identify different	types of application of MI	in communication enviror	ments (eg at the			
	workplace)	cypes of application of ML		linents (eg. at the			
	1 Introduction to commu	inization and ML involvem	ont				
	2. There a least a second to commu		ent				
-	2. Types, levels, components of effective communication and ways for using Machine Learning in						
Lessons	Communications						
	3. The future of communication in accordance with artificial intelligence						
	4. The effects of artificial intelligence in communication						
	Lesson 1	Lesson 2	Lesson 3	Lesson 4			
	- Describe fundamental	- Differentiate between	- To understand the	- Identify contexts,			
	communication	various approaches of	positive	situations and			
	principles and	communicating issues	communication	barriers that impede			
	practices	- To know the	- To understand the	communication self-			
	- Select creative and	components of	Machina Loarning in	- Adapt mossages to			
	modulities and	- Present messages in	communication	the diverse needs of			
Learning	technologies to	multinle	- To explain the	individuals groups			
outcomes	accomplish	communication	relation between	and contexts			
	communicative goals	- To understand how	new media and	- Differentiate			
	- To know the	machine learning and	communication	between various			
	importance of	artificial intelligence		approaches of			
	communication in the	can help		communicating			
	21st Century	organizations and		issues			
	- To know the different	communications					
	methods of effective						
	business						

Learning Unit 5: Communication					
	communication in brief - To know about the ML involvement in communication and organizations				
EQF level	5				
ECVET credits	5				
Duration	83 hours				
Recommended background	Learning Unit 1, 2, 3, 4				
Prerequisites (in terms of software)	Online conference tools (Zoom, Teams, Google Meets etc.)				
Learning materials	 20 pages with lecture notes 4 presentation files with 47 in total 9 Questions and Answers 2 Case Studies 				
Assessment materials	 2 practical exercises 15 multiple choice questions 				

Learning Unit 6: Legislation, Ethics, Project Management related to ML						
Unit description	Introduced the EU ethical and legal regulations for ML applications. Identify the life cycle, and project					
	management requirement for an AI application.					
Learning	- Understand the EU law and regulations for AI and ML applications.					
chiectives	- Identify the different type of bias in AI and their consequences.					
objectives	- Know the project management requirement and lifecycle for AI applications.					
	1. EU guidelines on ethics in artificial intelligence.					
Lessons	2. Bias in Machine learning.					
	3. Software engineering for AI applications.					
	4. Project Management					
	Lesson 1	Lesson 2	Lesson 3	Lesson 4		
	- Get an overview of	- Get a look about the	- Understand the	- Get an overview of		
	the EU ethics for AI	bias in ML.	project Lifecycle for	project management.		
Learning	and ML applications.	- Identify the different	an AI application.	- Define a data collection		
outcomes	- Identify the AI	types of machine	- Get an overview of	project.		
	Regulation for AI	learning bias.	the software			
	applications.		architecture used for			
			an AI application.			
EQF level	5					
ECVET credits	5					
Duration	83 hours					
Recommended	Learning Unit 1					
background						
Prerequisites (in						
terms of	n/a					
sonware)						
	• 14 pages					
Learning	• 60 slides					
materials	9 Questions and Answers					
	2 Case Studies					
Assessment	2 practical exercises					
materials	11 multiple choice questions					