

O4-T2: Specifications for an EU-wide vocational qualification in Machine Learning for ICT work

Funded by the Erasmus+ Programme of the European Union

TABLE OF CONTENTS

1	AB	BOUT THIS DOCUMENT				
2	2 VOCATIONAL QUALIFICATION ON MACHINE LEARNING					
	2.1	Qualification summary	5			
	2.2	Qualification structure	6			
3	CE	RTIFICATION	8			
4	RE	QUIREMENTS FOR TRAINING PROVIDERS	11			
5	QU	ALITY ASSURANCE	12			
	5.1	Internal quality assurance	14			
	5.2	External quality assurance	14			
6	LE.	ARNING UNITS SPECIFICATIONS	16			
7	CO	URSE DELIVERY PLANS	26			
	7.1	LU1: ML essentials for ICT professionals	26			
	7.2	LU2: Mathematical foundations				
	7.3	LU3: ML Algorithms, Programs and Protocols				
	7.4	LU4: Deep Learning (Advanced)				
	7.5	LU5: Communicating the merits, challenges and implications of ML technology to				
	custo	mers and within own organization				
	7.6	LU6: Legislation				
8	CO	NCLUSIONS				

1 ABOUT THIS DOCUMENT

This document contains the information that training providers need to offer the diploma "Level 5 Certificate for Machine Learning for ICT professionals", providing details and guidance on:

- Centre resource requirements
- Candidate entry requirements in the evaluation process
- Qualification standards and specifications
- Assessment requirements

2 VOCATIONAL QUALIFICATION ON MACHINE LEARNING

Name	Machine Learning skills for ICT professionals
Туре	VET
EQF level	5
Delivery method	VOOC/ in classroom
Awarding body	VET institution/ training provider
	Professional Certificate in ML methods
Type of certification to be	This certificate will act as an official testimonial of relevant
obtained	skills acquisition, to be used as evidence in the labour market
	but also as part of a learner's process towards the completion of
	a VET qualification on Machine Learning
Prior knowledge Python Language	
Entry requirements	Secondary education completed, at least 16 years old
Credit points	30 (0.06 credits/hour) – to be modified according to the
creat points	regulation of each implementing country
Duration	506 hours/ 2 semesters
Target group	ICT professionals
Assessment	• Written: 70%
Assessment	Practical: 30%
	To pass a learning element (module), participants need to
Scoring/Passing thresholds	respond correctly to 66% of all element questions. In order to
Scoring/rassing un conoius	obtain the certificate, participants need to reach the passing
	threshold in all learning elements
Delivery language	English, Italian, Greek, Romanian, French, German

2.1 Qualification summary

Qualification demonstrates personal attributes, education, training and/or work experience. It is shown in the form of credentials (e.g. certificates or diplomas) or other evidence linked to the delivery and assessment of training received. Qualification is the outcome of specific training, education, work experience and shows a significant interdependency with the personal attributes of an individual. Qualification summarises knowledge, skills, and capabilities which are required by specific activities of a job or daily life. From an employer's point of view, the notion is associated with effectiveness gained by an individual in the production process. From an individual's point of view, qualification is a precondition for successful occupation and job fulfilment, because the status of development influences his/her market opportunities and thus his/her labour market value. The development of key qualifications is directly connected to compliance with specific occupational and academic requirements.

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that has gained substantial prominence in diverse economic & social realities, having become the basis for a series of technological developments such as automated translation systems, medical image analysis, and virtual assistants. ML was born from pattern recognition but has evolved to refer to the use of data & learning algorithms to produce models, predict outcomes and make decisions with minimum human intervention.

MACHINA is an Erasmus+ KA2 project, which aims to tackle this ML skill deficit by increasing the relevance of Continuing & Initial VET provision in the sector, to assure that the existing & future ICT workforce will have the ML specific competences & transversal skills required to respond to modern workplace requirements and succeed in a competitive, fast-growing field. The project will also make available transnational educational materials in the form of OERs, to ensure wide adoption and support VET provision in a cost-effective, flexible way.

MACHINA developed a formal VET curriculum on Machine Learning for ICT professionals, to address current and emerging occupational needs, essentially improving the quality of sectoral formal and non-formal vocational training. The curriculum is referenced to the 5th EQF level and has a 2-semester duration. It comprises both theoretical & practical learning components, employing a modular structure to facilitate deployment in formal & informal C-VET environments.

Each learning unit was designed to consist of a unique set of learning outcomes, defined in terms of knowledge, skills and competences, which can be assessed and validated in a consistent and coherent approach. Each unit will be also assigned with ECVET credit points to serve as a point of reference for a future, accredited qualification on Machine Learning for ICT professionals.

2.2 Qualification structure

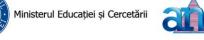
The MACHINA course, consisting of six learning units, is described in this section below. The learning units are:

- > **LU1** ML essentials for ICT professionals,
- > LU2 Mathematical Foundations,
- > LU3 ML Algorithms, Programs and Protocols,
- LU4 Deep Learning Advances,
- LU5 Communicating the merits, challenges and implications of Machine Learning technology,
- > LU6 Legislation, Ethics, Project Management related to Machine Learning

Each learning unit is composed of several lessons and each lesson includes 2 or more learning outcomes.

Learning Units	Lessons	Duration		
ML essentials for	ML essentials for Lesson 1: Introduction to ML			
ICT professionals	Lesson 2: Where to apply ML	-		
	Lesson 3: Machine Learning and Data processing	-		
	Lesson 4: Example ML applications	-		
Mathematical	Lesson 1: Set, Functions, Relations	Total: 80 hours		
Foundations	Lesson 2: Linear Algebra			
	Lesson 3: Probability Theory	-		
	Lesson 4: Statistics	-		
Lesson 5: Computation theory				

Learning Units	Lessons	Duration
ML Algorithms,	Lesson 1: Machine Learning by linear models	Total: 100 hours
Programs, and Protocols	Lesson 2: Supervised learning	-
	Lesson 3: Unsupervised learning	_
	Lesson 4: Semi-supervised learning	-
	Lesson 5: Programming languages and frameworks for Machine Learning algorithms	-
	Lesson 6: Best practices for ML	-
Deep Learning	Lesson 1: Multilayer Perception (MLP)	Total: 80 hours
(Advanced)	Lesson 2: Convolutional Neural Networks (CNN)	
	Lesson 3: Recurrent Neural Networks (RNN)	
	Lesson 4: Autoencoders (AE), Restricted Boltzmann Machines (RBM)	
Communicating the merits,	Lesson 1: Introduction to communication and ML involvement	Total: 83 hours
challenges, and implications of Machine Learning	Lesson 2: Types, levels, components of effective communication and ways for using Machine Learning in Communications	-
technology to customers and	Lesson 3: The future of communication in accordance with artificial intelligence	-
within own organization	Lesson 4: The effects of artificial intelligence in communication	
Legislation,	Lesson 1: EU guidelines on ethics in artificial intelligence	Total: 83 hours
Ethics, Project	Lesson 2: Data Value/Costs Model	
Management		
related to ML	Lesson 4: Software engineering for AI applications	


3 CERTIFICATION

The qualification will be awarded to candidates who successfully complete the assessment threshold of 66%. The assessment and validation of learning outcomes given by the qualification is presented below:

MACHINA VALIDATION FRAMEWORK				
Examination Body	Third party certification organization (e.g., ECQA, OCNNI)			
Examination duration	4-6 hours			
	Documentation (1)			
	Certificate of completion of the MACHINA curriculum, as			
	delivered in a classroom-based environment			
	or			
	• Certificate of completion of the MACHINA VOOC			
Prerequisites for	or			
applicants	• Certificate of completion of a course that includes at least 3			
	modules of the MACHINA curriculum			
	Documentation (2)			
	Curriculum vitae			
	Documentation (3)			
	Completed application form			
Prior Knowledge	Python Language			
	• Written: 70%			
Assessment method	• Practical: 30%			
	Multiple Choice Questions			
	Observation (via videos)			
Assessment tools	Simulation			
	Evidence/results extracted from programming practical work			
	Module 1: ML essentials for ICT professionals			
Modules	Module 2: Mathematical Foundations			

	Module 3: ML Algorithms, Programs and Protocols	
	•	Module 4: Deep Learning
	•	Module 5: Communicating the merits, challenges and
		implications of Machine Learning technology to customers and
		within own organisation
	•	Module 6: Legislation, Ethics, Project Management related to ML
	•	Know ML characteristics and different algorithms.
	•	Understand the concept behind ML and how to detect patterns
		from data.
	•	Identify different types of applications that use the ML
		algorithms.
	•	Know the mathematical concepts required for writing programs
		and algorithms for ML and AI
	•	Use programming languages for the implementation of machine
		learning algorithms.
	•	Define foundational machine learning models
		Select suitable ML model for a given problem
Main Learning		Develop/Implement ML models using programming languages.
Main Learning Outcomes	•	Understand deep neural network architecture.
	•	Assess the potential of deep learning in different applications
		such as natural language processing, computer vision, or
		recommendation systems.
	•	Understand the EU law and regulations for AI and ML
		applications.
	•	Identify different types of bias in AI and their consequences.
	•	Know the project management requirements and the lifecycle
		for AI applications.
	•	Adapt messages to the diverse needs of individuals, groups and contexts
	•	Differentiate between various approaches of communicating
		issues

	Select creative and appropriate modalities and technologies to		
	accomplish communicative goals		
	Present messages in multiple communication modalities and		
	contexts		
	• Basic: Basic knowledge of facts, principles, processes and		
	general ML concepts		
	• Intermediate: Factual and theoretical knowledge and a range		
	of cognitive and practical skills required to generate ML enabled		
Performance levels	solutions to specific contexts		
	• Advanced: Comprehensive, specialized, factual and theoretical		
	knowledge and a comprehensive range of cognitive and		
	practical skills required to develop creative ML enabled		
	solutions to specific contexts and problems		
	Description of the minimum level of performance (basic,		
Performance criteria	intermediate or advanced) a participant must demonstrate for each		
	learning outcome to be assessed as competent.		
	To pass a learning element (module), participants need to respond		
Scoring/Passing	correctly to 66% of all element questions. In order to obtain the		
thresholds	certificate, participants need to reach the passing threshold in all		
	learning elements		
	Professional Certificate in ML methods		
Type of certification to	This certificate will act as an official testimonial of relevant skills		
be obtained	acquisition, to be used as evidence in the labour market but also as		
	part of a learner's process towards the completion of a VET		
	qualification on Machine Learning		

4 REQUIREMENTS FOR TRAINING PROVIDERS

Accredited / Authorized education institutions can integrate the curricula into an existing course or a new course that can be offered at the undergraduate, postgraduate and graduate level. These education providers are required to demonstrate the relevance of their course by the description of the course, goals and objectives, the outline of the training course content and how the course relates to the Universal and related curricula.

Trainers must be able to demonstrate that they meet the following occupational expertise requirements. They should:

- be occupationally competent or technically knowledgeable in the area[s] for which they are delivering training and/or have experience of providing training. This knowledge must be to the
- > same level and/or at most a higher level that training being delivered
- > have recent relevant experience in the specific area they will be assessing
- > have credible experience of providing training.

The training providers must ensure that learners have the potential and opportunity to gain the qualifications successfully and that they have the full engagement of the employers for the full programme.

MACHINA

QUALITY ASSURANCE 5

Quality assurance in education and competence assessment must be oriented towards the development of systems that can generate confidence in the process.

Quality standards are provided by independent standardization bodies and sector associations, supplied as normative documents. De facto standards are offered by public and/or private industry initiatives and are achieved through broad acceptance of stakeholders in a specific sector/field. Quality standards are distinguished according to the subjects covered, e.g. process, method and content.

In case of professional training, the reference is ISO 9001:2015 "Quality management systems — Requirements". The guidelines contained within ISO 9001:2015 do not add to, change the requirements for a training organization and provides guidance for a quality management system in educational organizations.

For competency certification, the reference is ISO/IEC 17024:2012: Conformity assessment -General requirements for bodies operating certification of persons.

The international standard ISO/IEC 17024 has been drawn up with the objective of achieving and promoting a globally accepted benchmark for organizations offering certification (ISO/IEC 17024, 2012).

Thus we can say that the process of professional training as well as the evaluation of competences must have a clear system and in accordance with international requirements. Thus, if an organization functions as a training provider and at the same time performs the certification of acquired skills, it can implement the requirements of the two standards mentioned above: ISO 9001:2015 "Quality management systems — Requirements" and ISO/IEC 17024:2012: Conformity assessment — General requirements for bodies operating certification of persons.

In an ideal case, applied quality standard(s) should be the basis for the certification bodies and their schemes, to promote acceptance at national and international level. One immediate approach to harmonising e-skills certifications is to assess underlying systems for developing and maintaining certification schemes. This is likely to establish the environment for mutual recognition and the global exchange of personnel. Quality management in further education and vocational training focuses, in particular, on organisation, learning infrastructure, training and teaching, and

the process of learning itself. Primarily, the certification body has to develop its own quality policy, implemented by means of quality models or concepts. In addition, certification bodies should derive a related mission statement to be followed by all persons involved (ISO/IEC 17024, 2012).

The organization must implement procedures to ensure the functionality of the system. Can implement procedures regarding document control, record control, corrective action, preventive action, non-compliant process control and internal audit. Also, for the training process, the organization must have operational procedures that describe how this process is carried out.

From the certification point of view, the organization must have a documented structure which safeguards impartiality, including provisions to assure the impartiality of the operations of the certification body. This structure shall enable the participation of all parties significantly concerned in developing policies and principles on the content and functioning of the certification system, without any particular interest predominating. In the case that organizations decide to subcontract work related to certification (e.g. examination, testing) to an external body or person, a properly documented agreement is recommended; this should include confidentiality and prevention of a conflict of interest. Decision on certification shall not be subcontracted under any circumstances. In general, the assessment of conformity of an object of interest with specific mandatory or voluntary standards is subject to further activity called accreditation.

Organizations are expected to support their staff in ensuring that their knowledge and/or practice remains current. This includes currency within the occupational area and of best practice in certification of competencies, delivery, mentoring, training, assessment and quality assurance. It should also take into account any national, international policy and legislative developments. All this is implemented in the context in which it is desired to develop an effective quality management system in education, professional training and certification of competences. Quality assurance includes, on the one hand, internal quality assurance, carried out by each organization, and external bodies are responsible for external quality assurance.

5.1 Internal quality assurance

Internal Quality Assurance (IQA) is the process of monitoring the teaching, learning, and assessment activities that a learner at a training provider will undertake. It refers to the Quality Assurance carried out in a training center, by an internal member of staff, called Quality manager.

Quality managers are the Supervisors or Managers within training centers. They are responsible for the staff, systems, and procedures. They are not trainers or assessors because this would cause a conflict of interest.

Internal quality assurance is key to ensuring that the training provider has an efficient training system and the competency certification process is independent of the training process.

Quality manager must have:

- > experience in the technical field in which he carries out his activity
- experience in professional training
- experience in the assessment of professional skills
- > proof of the fact that he participated in a quality manager training program

5.2 External quality assurance

External Quality Assurance (EQA) is the process of ensuring that the organization carries out all activities in a consistent, safe and fair manner.

External Quality Assurance is carried out by an external body. The external body can be an authority, an accreditation body.

The External Quality Assurance process guarantees that the service offered by the organization (professional training and competency certification) is of quality and complies with all related standards. The external body will monitor the training center's processes/practices. The external body will also monitor the competence of the organization's staff (trainers, competence evaluators). In the event that it identifies non-conformities in the evaluation process, the external body will make recommendations and monitor the implementation of the respective recommendations.

The external evaluation body collaborates with evaluators who have experience in the field of professional training and competency certification. They also have the necessary training to make external evaluations.

LEARNING UNITS SPECIFICATIONS

	Learning Unit 1: ML essentials for ICT professionals				
Unit description	Defines the essential ML characteristics and addresses the fundamental features of ML applications.				
Learning objectives	 Get an overview of the ML characteristic and its different algorithms. Understand the concept behind ML and how to detect patterns from data. Identify different types of applications that use the ML algorithms. 				
Lessons	Lessons 1. Introduction to ML. 2. Where to apply ML. 3. Machine learning and Data processing. 4. Example ML applications.				
Learning outcomes	Lesson 1 - Understand the theoretical principles of Machine Learning - Get a general overview of the different machine learning algorithms.	Lesson 2 - Types of problems that Machine Learning algorithms can solve nowadays (ex. regression and classification) - How to solve the problems using various Machine Learning techniques.	Lesson 3 - Understand Data preprocessing and visualization methods.	Lesson 4 - Understand the elements of ML in applications. - Analyze some existing ML applications according to a given context.	
EQF level	5				
ECVET credits	5				
Duration	83 hours				
Recommended background	Basic understanding of	Linear Algebra, Background o	n computer science.		
Prerequisites	Basic knowledge of Python language				
Learning materials	 21 pages with lecture notes 4 presentation files with 66 slides in total 10 Questions and Answers 2 Case Studies 				
Assessment materials	 2 practical exercises on Juoyter IPython NoteBook with indicative solutions 10 multiple choice questions 				

	Learning Unit 2: Mathematical Foundations					
Unit description	Defines the mathematical foundation required for writing programs and algorithms for ML and AI.					
Learning objectives	To break down the difficult mathematical concepts into easier one to understand concepts. To focus on mathematical concepts and algorithms to get full understanding of ML and AI techniques and methodologies.					
Lessons	1. Set, Functions, Relations 2. Linear Algebra 3. Probability Theory 4. Statistics 5. Computation theory					
Learning outcomes	Lesson 1 -To know the definition of sets and basic sets' operations -To know definition of function and basic functions' operations -To know definition of relation, equivalence relation, partition of a set -To know the concept of local minima and derivatives of a function -To be able to compute an approximation of	Lesson 2 -To know the definition of vector space and basic vector operations -To know the definition of metric -To know the difference between scalar, vector, tensor -To know how calculate the Hadamard product Hadamard product of know the definition of the gradient of a function	Lesson 3 -To know the frequentist definition of probability of an event -To know the definition of probability as ratio between favorable outcomes on total outcomes on total outcomes on total coutcomes on total outcomes on basic calculate easy probabilities base on basic combinatorics -To know the definition of join probability -To know the definition of join probability -To know the	Lesson 4 -To know the definition of population and sample -To know the meaning and to be able to compute mean, median, variance, standard deviation of a population -To know the meaning of covariance and correlation -To know the meaning of maximum likelihood estimator -To know the meaning of maximum	Lesson 5 -To know the concept of algorithm -To be able to write a simple algorithm as a flow chart -To know the basics of procedural programming language (operations, conditions, if-else, while, for) -To be able write a simple algorithm in a programming language (Python) -To know the basic data structures (sets, lists, associative,	

	Learning Unit 2: Mathematical Foundations					
	derivative at a		-to know the	multi variate	arrays)	
	point using deltas		definition of	linear regression	-To know the	
			conditional	and how to	concept of classes,	
			probability	compute the	instances, methods	
			-To know the	parameters		
			Bayes Theorem	-To know the		
				definition of		
				correlation matrix		
				-To know the		
				meaning of logistic		
				regression		
				-To know the		
				definition of		
				precision, recall,		
				confusion matrix		
EQF level	5					
ECVET credits	4.8					
Duration	80 hours					
Recommended background	None					
Prerequisites (in terms of software)	Knowledge of a programming language					
	26 pages with lecture notes					
Learning	• 1 presentation file with 15-20 slides					
materials	• 15 Questions and Answers					
	2 Case Studies					
Assessment	• 2 practical e	exercises				
materials	• 15 multiple	choice questions				

	Learning Unit 3: ML Algorithms, Programs and Protocols									
Unit	Defines the found	ational machine lea	rning models and u	inderstands how to	select the suital	ole ML model for a				
description	given problem and	given problem and how to implement it in one of the available programming languages.								
- Foundational understanding of machine learning models.										
	- Understand som	e of the essential m	achine learning alg	orithms and how to	o evaluate the pe	rformance of				
Learning objectives	them.									
objectives	- Identify different	t programming lang	guages and framew	orks that support t	he implementati	on of machine				
	learning algorithn	ns.								
	1. Machine learning by linear models									
	2. Supervised lear	ning								
Lessons	3. Unsupervised le	earning								
Lessons	4. Semi supervised	d learning								
	5. Programming la	anguages and frame	eworks for Machine	e learning algorithm	IS					
	6. Best practices f	or ML								
	Lesson 1	Lesson 2	Lesson 3	Lesson 4	Lesson 5	Lesson 6				
	- Get an	- Get an	- Get an	- Get an	- Obtain an	- Understand				
	overview of ML	overview of	overview of	overview of	overview of	best practices				
	linear models.	supervised	unsupervised	semi-	the different	for building				
	- Identify the	learning and its	learning and its	supervised	programming	machine				
	different ML	utility.	utility.	learning and its	languages	learning				
Learning	linear models'	- Identify the	- Identify the	utility.	and	applications.				
outcomes	algorithms and	different	different	- Identify the	frameworks	- Identify				
	implementation.	algorithms of	algorithms of	different	available for	Hyperparameter				
		supervised	unsupervised	algorithms of	ML.	Tuning				
		learning and	learning and	semi-		methods.				
		implementation.	implementation.	supervised						
				learning, and						
				implementation.						
EQF level	5									
ECVET credits	6									
Duration	100 hours									
Recommended background	Basic understanding of Linear Algebra, and probability theory. Learning Unit 1 and 2									
Prerequisites	Basic knowledge o	of Python language								

	Learning Unit 3: ML Algorithms, Programs and Protocols					
	18 pages with lecture notes					
Learning	• 6 presentation files with 112 slides in total					
materials	• 15 Questions and Answers					
	2 Case Studies					
Assessment	3 practical exercises on Juoyter IPython NoteBook with indicative solutions					
materials	15 multiple choice questions					

,	The content of this unit is a			
	The content of this unit is a general introduction to basic concepts relating with the most common neural			th the most common neural
Unit description	networks models used in real life, i.e.: Multilayer Perceptron, Convolutional Networks, Recurrent			
]	Networks, Restricted Boltz	mann Machines		
,	To understand the importa	nt details about deep neur	al networks and get to k	now of different deep neural
Learning	network architecture.			
-	To identify the potential of deep learning in different applications such as natural language processing,			
	computer vision, or recomm	mendation systems.		
	1. Multilayer Perceptron (M	ILP)		
	2. Convolutional Neural Ne	tworks (CNN)		
Lessons	3. Recurrent Neural Netwo	rks (RNN)		
	4. Autoencoders (AE), Rest	ricted Boltzmann Machine	s (RBM)	
]	Lesson 1	Lesson 2	Lesson 3	Lesson 4
	-To know the definition	-To know basic CNN	-To know the	-To know the definition of
	of MLP	filters	definition of RNN	AE
	-To know when to use	-To know when to use	-To know what a	-To know the definition of
]	MLP model	CNN model	sequence model is	RBM
-	-To know definition of	-To know basic CNN	-To know when to	-To be able to implement,
	different activation	architectures	use RNN model	train, tuning and validate a
t	functions	-To know basic	-To know basic RNN	AE model using Keras API
-	-To know basic cost	concepts about	architectures and	-To be able to implement,
	functions' definition	transfer learning, end-	modules (GRU, LSTM)	train, tuning and validate a
Learning outcomes	-To know common	to-end learning, multi-	-To be able to	RBM model using Keras
outcomes	gradient descent	task learning	implement, train,	API
t	techniques to minimize	-To be able to	tuning and validate a	
	cost functions	implement, train,	RNN model using	
-	-To know general	tuning and validate a	Keras API	
]	principles of back	CNN model using Keras		
]	propagation algorithm	API		
-	-To know how to tune	-To be able to import a		
]	model fitting	pre-trained CNN to		
.	-To be able to	solve specific problem		
i	implement, train, tuning			

Learning Unit 4: Deep Learning (Advanced)			
	and validate a MLP model using Keras API		
EQF level	5		
ECVET credits	4.8		
Duration	80 hours		
Recommended background	Learning unit 1,2,3		
Prerequisites (in terms of software)	Knowledge of the basics of Python programming language		
Learning materials	 23 pages with lecture notes 4 presentation files with 66 slides in total 18 Questions and Answers 2 Case Studies 		
Assessment materials	 2 practical exercises 18 multiple choice questions 		

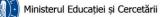
Learning Unit 5: Communication				
	Through this course, each	participant builds on their	communication strengths a	and learn new and
Hait de caintier	interesting techniques to add to their skillset.			
	This course will empower the participant to become an advanced communicator at workplace.			r at workplace.
Unit description	Each participant will learn the elements of communication and be able to flex each one to meet objectives.			
	The information and practice gained through this course will help bridge the gap in participants current			
	verbal skills.			
	Get familiar with	basic communication princ	iples and practices.	
Learning	• Understand the c	omponents of effective com	munication and ways for u	sing Machine Learning in
Learning	Communications.			
objectives	Identify different	types of application of ML i	n communication environn	nents (eg. at the
	workplace).			
	1. Introduction to commu	nication and ML involvemen	nt	
	2. Types, levels, components of effective communication and ways for using Machine Learning in			
Lessons	Communications			
	3. The future of communication in accordance with artificial intelligence			
	4. The effects of artificial intelligence in communication			
	Lesson 1	Lesson 2	Lesson 3	Lesson 4
	- Describe fundamental	- Differentiate between	- To understand the	- Identify contexts,
	communication	various approaches of	positive	situations and
	principles and	communicating issues	communication	barriers that impede
	practices	- To know the	- To understand the	communication self-
	- Select creative and	components of	role of AI and	efficacy
	appropriate modalities and	communication	Machine Learning in communication	 Adapt messages to the diverse needs of
Learning	technologies to	 Present messages in multiple 	- To explain the	individuals, groups
outcomes	accomplish	communication	relation between	and contexts
	communicative goals	- To understand how	new media and	- Differentiate
	- To know the	machine learning and	communication	between various
	importance of	artificial intelligence		approaches of
	communication in the	can help organizations		communicating
	21st Century	and communications		issues
	- To know the different			
	methods of effective			
	business			

Co-funded by the Erasmus+ Programme of the European Union

Learning Unit 5: Communication		
	communication in brief - To know about the ML involvement in communication and organizations	
EQF level	5	
ECVET credits	5	
Duration	83 hours	
Recommended background	Learning Unit 1, 2, 3, 4	
Prerequisites (in terms of software)	Online conference tools (Zoom, Teams, Google Meets etc.)	
Learning materials	 20 pages with lecture notes 4 presentation files with 47 in total 9 Questions and Answers 2 Case Studies 	
Assessment materials	 2 practical exercises 15 multiple choice questions 	

	Learning Unit 6:	Legislation, Ethics, Project I	Management related to ML		
Unit description	Introduced the EU ethica	Introduced the EU ethical and legal regulations for ML applications. Identify the life cycle, and project			
onit description	management requireme	management requirement for an AI application.			
Logning	- Understand the EU law and regulations for AI and ML applications.				
Learning objectives	- Identify the different type of bias in AI and their consequences.				
objectives	- Know the project management requirement and lifecycle for AI applications.				
	1. EU guidelines on ethics in artificial intelligence.				
Lessons	2. Bias in Machine learning.				
Lessons	3. Software engineering	for AI applications.			
	4. Project Management				
	Lesson 1	Lesson 2	Lesson 3	Lesson 4	
	- Get an overview of	- Get a look about the	- Understand the	- Get an overview of	
	the EU ethics for AI	bias in ML.	project Lifecycle for an	project management.	
Learning	and ML applications.	- Identify the different	AI application.	- Define a data collection	
outcomes	- Identify the AI	types of machine	- Get an overview of	project.	
	Regulation for AI	learning bias.	the software		
	applications.		architecture used for		
			an AI application.		
EQF level	5				
ECVET credits	5				
Duration	83 hours				
Recommended	Learning Unit 1				
background					
Prerequisites (in	n/a				
terms of software)					
	• 14 pages				
Learning	• 60 slides				
materials	9 Questions and	l Answers			
	2 Case Studies				
Assessment	• 2 practical exercises				
materials	11 multiple choice questions				

COURSE DELIVERY PLANS 7


The curriculum is designed so that to cover horizontally the various aspects (scientific, technical, ethical, communicative) and topics of the machine learning field. This is coherent with course objectives; to give basic operative skills and general knowledge of machine learning theory and practice to workers not academically trained in the field. Consider the fact that if today basic information technology knowledge and skills for workers in the service industry are basically the use of the "office packet" (emailing, text processing, and calculus sheets) in the feature knowledge and basic use of ML algorithms will be probably necessary. The curriculum has been designed for a general audience, so that independently from the individual technical or scientifically entry level, everyone could choose learning units accordingly to personal or company interests or educational needs. The entry level is post-graduation in any course with basic mathematical courses. The duration of the course will last 3-4 months, considering 2 hours per day of learning activities. The targeting EQF level is 5.

7.1 LU1: ML essentials for ICT professionals

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine
	Learning) using "Who knows about ML" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate understanding/assessment	Online:
	Individual task: Encourage learners to read the use cases and
	to comment on their findings.
	Start a new topic in a forum with open questions like "What"s
	the future of ML" or "Is ML the solution for anything?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a

Lesson 1: Introduction to ML

	group writing his own ideas and sharing them. Initiate a debate around topics like "What"s the future of ML" or "Is ML the solution for anything?".
Closing activities	Summarize the main key elements learned and provide common feedback based on learner inputs; focusing on the essentials of ML technology.
Resources	Paper, pencil, board. If possible computer classroom for individual exercises.
Prerequisites	Basic knowledge of ICT and Linear Algebra

Lesson 2: Where to Apply ML

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Remind the group of learners of the definition of Machine
	Learning and what are the types of it by asking "What are the
	different types of ML?"
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate understanding/assessment	Online:
	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like "? Do you
	know what types of problems the ML algorithms can solve?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analysing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like "Do you know what types of
	problems the ML algorithms can solve? ".
Closing activities	Summarize the main key elements learned and provide
	common feedback based on learner inputs; focusing on the
	essentials of ML technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	Basic knowledge of ICT and Linear Algebra

Lesson 3: Machine learning and Data processing

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine
	Learning) using "Who knows about data pre-processing"
	questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate understanding/assessment	Online:
	Individual task: Encourage learners to read the use cases and
	to comment on their findings.
	Start a new topic in a forum with open questions like "What"?
	What are the steps for processing the data of an ML project?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analysing and commenting the use case, each learner in a
	group writing his own ideas and sharing them.
	Initiate a debate around topics like " Can you name the steps
	for processing the data of an ML project?
Closing activities	Summarize the main key elements learned and provide
	common feedback based on learner inputs; focusing on the
	essentials of ML technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	Basic knowledge of ICT and Linear Algebra

Lesson 4: Example ML Applications

Setting	Online or in classroom	
Duration:	Classroom: 10h	
	Lecture:4h; practice/individual work 6h.	
	Online: 10h.	
Lesson beginning	Assess the awareness of the group of learners (Machine	
	Learning) using "Who can identify an application that uses ML"	
	questions.	
Engage/motivation	Classroom: Make sure the fundamental technical elements are	
	understood, use practical examples and ask open questions to	

	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to comment on their findings.
	Start a new topic in a forum with open questions like What"s
	applications do you know from your everyday life uses ML?
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like "What" are the different
	areas that can apply ML to facilitate its work?
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of
	ML technology.
Resources	Paper, pencil, board. If possible, computer classroom for
	individual exercises.
Prerequisites	Basic knowledge of ICT and Linear Algebra

7.2 LU2: Mathematical foundations

Lesson 1: Set, Functions, Relations

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online : 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Assess the importance of set theory for a general formal approach
	to ML
	Checking the degree of classroom formal training and background
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the
understanding/assessment	learning materials
Closing activities	None
Resources	Paper, pencil, board.
Prerequisites	No knowledge or experience needed

Lesson 2: Linear Algebra

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online : 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Assess the importance of linear algebra to be operative in ML
	libraries active use
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the
understanding/assessment	learning materials
Closing activities	None

Resources	Paper, pencil, board.
Prerequisites	No knowledge or experience needed

Lesson 3: Probability Theory

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online: 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Assess the importance of probability theory to be aware its
	funding role of ML theory
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the
understanding/assessment	learning materials
Closing activities	None
Resources	Paper, pencil, board.
Prerequisites	No knowledge or experience needed

Lesson 4: Statistics

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online : 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Assess the importance of statistics in data analysis and the
	importance of linear regression theory as starting point and
	benchmark for general ML algorithms
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the
understanding/assessment	learning materials

Closing activities	None
Resources	Paper, pencil, board.
Prerequisites	No knowledge or experience needed

Lesson 5: Computation theory

Setting	Online or in classroom		
Duration:	Classroom: 10h		
	Lecture: 6h		
	Practice/Individual work: 4h		
	Online : 6h		
	Lecture: 3h		
	Practice/Individual work: 3h		
Lesson beginning	Introducing informally the python computational framework		
Engage/motivation	Classroom: Make sure the fundamental technical elements are		
	understood, use a real computational framework as		
	Ipython/Jupyter for concepts' exemplification.		
Whole group instructions	Yes		
Evaluate	Checking the results of individual assignments provided in the		
understanding/assessment	learning materials		
Closing activities	Developing together with the teacher some IPython notebooks to		
	solve easy data analysis problem on its own pc		
Resources	Paper, pencil, board, computational framework		
Prerequisites	No knowledge or experience needed		

7.3 LU3: ML Algorithms, Programs and Protocols

Lesson	1:	Machine	learnina	bv	linear models
Lebbon		machine	icui ming	~	micui moucis

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "Who knows about regression or classification analysis"
	questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like ""What"s
	mathematical models do you know can be used to solve an ML
	problem?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analysing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like " "How you can apply a linear
	model to solve one of the ML problems?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	LU1 and LU2, Basic understanding of Linear Algebra, and
	probability theory.

Lesson 2: Supervised learning

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "Who knows about Decision Trees" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like "What"s <i>Supervised Learning</i> ?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like "What"s classification?".
Closing activities	Summarize the main key elements learned and provide common feedback based on learner inputs; focusing on the essentials of ML
Descurres	technology.
Resources	Paper, pencil, board. If possible computer classroom for individual exercises.
Prerequisites	LU1 and LU2, Basic understanding of Linear Algebra, and probability theory.

Lesson 3: Unsupervised learning

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "Who knows about K-means clustering" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are

	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to comment on their findings.
	Start a new topic in a forum with open questions like "What"s Unsupervised Learning?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like like "What"s clustering?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	LU1 and LU2, Basic understanding of Linear Algebra, and probability theory.

Lesson 4: Semi supervised learning

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "Who knows about semi- supervised" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like "What"s
	semi-Supervised Learning?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a group

	writing his own ideas and sharing them.
	Initiate a debate around topics like "What"s semi-Supervised
	Learning?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	LU1 and LU2, Basic understanding of Linear Algebra, and
	probability theory.

Lesson 5: Programming languages and frameworks for Machine learning algorithms

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "what programming languages do you know for ML"
	questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like " What are
	the top programming languages used in ML projects?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like can you guess the top 3
	programming languages used in ML projects?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	LU1 and LU2

Lesson 6: Best practices for ML

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "what programming languages do you know for ML"
	questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like ""What's the
	best way to choose an ML algorithm parameter??".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like ""What's the best way to
	choose an ML algorithm parameter?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	LU1 and LU2, LU3, L1,2,3,4,5.

7.4 LU4: Deep Learning (Advanced)

Lesson 1: Multilayer Perceptron (MLP)

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online : 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Introduce the single perceptron model by analogy with linear
	regression and logistic regression, stressing the same underlying
	input linear structure and different output nonlinear activation
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the
understanding/assessment	learning materials – Lab activity
Closing activities	None
Resources	Paper, pencil, board. Computational framework
Prerequisites	LU1, LU2, LU3

Lesson 2: Convolutional Neural Networks (CNN)

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online: 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Introduce the CNN with the problem of input dimensionality
	reduction
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the

understanding/assessment	learning materials – Lab activity
Closing activities	None
Resources	Paper, pencil, board. Computational framework
Prerequisites	LU1, LU2, LU3, LU4-lesson1

Lesson 3: Recurrent Neural Networks (RNN)

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online : 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Introduce the RNN with the problem of unknow input and output
	sequence length and the utility of having units with memory
	capacities
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the
understanding/assessment	learning materials – Lab activity
Closing activities	None
Resources	Paper, pencil, board. Computational framework
Prerequisites	LU1, LU2, LU3, LU4-lesson1

Lesson 4: Autoencoders (AE), Restricted Boltzmann Machines (RBM)

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture: 6h
	Practice/Individual work: 4h
	Online: 6h
	Lecture: 3h
	Practice/Individual work: 3h
Lesson beginning	Introduce the AE and RBM in the context of self-supervised and
	unsupervised learning using NN architectures
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.

Whole group instructions	Yes
Evaluate	Checking the results of individual assignments provided in the
understanding/assessment	learning materials – Lab activity
Closing activities	None
Resources	Paper, pencil, board. Computational framework
Prerequisites	LU1, LU2, LU3, LU4-lesson1

7.5 LU5: Communicating the merits, challenges and implications of ML technology to customers and within own organization

Lesson 1: Introduction to communication and ML involvement

Setting	Online or in classroom
Duration:	Classroom: 21h
	Lecture: 10h; practice/individual work 11h.
	Online: 21h
	Lecture: 8h; practice/individual work 13h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning,) using "Who knows about" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
	Online:
	Make sure the fundamental technical elements are understood, use
	practical examples and ask open questions to ensure the basics and
	the vocabulary are understood.
Whole group instructions	Yes
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment and present on their findings for the class.
	Open a live online debate about topics like "What"s the future of ML"
	or "Is ML the solution for anything?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analyzing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.

Setting	Online or in classroom
	Initiate a debate around topics like "What"s the future of ML" or "Is
	ML the solution for anything?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for individual exercises.
	More online resources and possible topics for discussion:
	• The Role of Communication in Society -
	https://www.youtube.com/watch?v=y15zc6meS4o
	Role and Importance of Communication -
	https://www.youtube.com/watch?v=qNrwhyz-nzs
	• Effective Communication: Why is it Important in Management?
	- <u>https://www.youtube.com/watch?v=nIQhHEWpdWs</u>
	• 5 Ways To Develop Effective Business Communication -
	https://www.youtube.com/watch?v=yfneUJ4W6Lo
	• Characteristics of Effective Communication -
	https://www.youtube.com/watch?v=LrjlW00kkws
	• EFFECTIVE COMMUNICATION IN THE WORKPLACE -
	https://www.youtube.com/watch?v=1-RuWoE Mmw
	Methods of Communication in Business -
	https://www.youtube.com/watch?v=w_oQ5JLSZGE
	• The Advantages & Disadvantages of Technology -
	https://www.youtube.com/watch?v=5r4Nzv09Cg4
	• What are Interpersonal Skills -
	https://www.youtube.com/watch?v=VoUkP6304Ik

Lesson 2: Types, levels, components of effective communication and ways for using Machine Learning in Communication

Setting	Online or in classroom
Duration:	Classroom: 25h
	Lecture: 12h; practice/individual work 13h.
	Online: 25h
	Lecture: 10h; practice/individual work 15h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning,)
	using "Who knows about" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.

Setting	Online or in classroom
	Use exercises like:
	Design a machine learning system sketch to suggest a set of
	keywords for a long text that synthetizes the text content using
	a recurrent neural network model.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to comment on their findings.
	Start a new topic in a forum with open questions like "What"s the future of ML" or "Is ML the solution for anything?".
	Classroom: Individual task: Create groups of 3 or 4 individuals, each group analyzing and commenting the use case, each learner in a group writing his own ideas and sharing them. <i>Study case – chat bot</i>
	https://towardsdatascience.com/how-to-create-a-chatbot-with-
	python-deep-learning-in-less-than-an-hour-56a063bdfc44
	Initiate a debate around topics like "What"s the future of ML" or "Is ML the solution for anything?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for individual
	exercises.
	More resources for exercise
	https://stanford.edu/~shervine/teaching/cs-
	230/cheatsheet-recurrent-neural-networks
	Verbal Vs Non-verbal Communication: Difference between
	them with examples & comparison chart -
	https://www.youtube.com/watch?v=akfatVK5h3Y
	Process and Levels of Communication -
	https://www.youtube.com/watch?v=SYINeVtPn-c
	Communication Skills For Workplace Success-
	<u>https://www.youtube.com/watch?v=_ywNxbf4JyM</u>
	• 10 Barriers to Effective Communication -
	https://www.youtube.com/watch?v=slq1nAhZuqE
	How can Artificial Intelligence be used in businesses? -
	https://www.youtube.com/watch?v=hLSDcAxmPJg

Setting	Online or in classroom
	What is Artificial Intelligence How does it help in
	communication -
	https://www.youtube.com/watch?v=Z1eOPpTcyy0
	How Artificial Intelligence is Transforming Business -
	https://www.youtube.com/watch?v=mz4eyl0mC7A
	Top 10 Artificial Intelligence Technologies In 2021 -
	https://www.youtube.com/watch?v=by-WC6gJ1yM

Lesson 3: The future of communication in accordance with artificial intelligence

Setting	Online or in classroom
Duration:	Classroom: 22h
	Lecture: 10h; practice/individual work 12h.
	Online: 22h
	Lecture: 6h; practice/individual work 16h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning,)
	using "Who knows about" questions.
Engage/motivation	Classroom: Make sure the fundamental elements are understood, use
	practical examples and ask open questions to ensure the basics and
	the vocabulary are understood.
	Online:
	Make sure the fundamental elements are understood, use practical
	examples and ask open questions to ensure the basics and the
	vocabulary are understood.
Whole group instructions	Yes.
	Use exercises such as:
	Using Python: design, implement and validate a machine
	learning system to classify if a sentence is
	polite/unpolite/neutral
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the examples of ML
	application and comment on their findings.
	Start a new topic in a forum with open questions like "Is ML the
	solution for better communication?", "Are there any risks involved?".
	Classroom:
	Initiate a debate around topics like "Is ML the solution for better
	communication?", "Are there any risks involved?"
Closing activities	Summarize the main key elements learned and provide common

Setting	Online or in classroom
	feedback based on learner inputs; focusing on the essentials of MLin
	communication.
Resources	Paper, pencil, board. If possible computer classroom for individual
	exercises.
	https://scikit-
	learn.org/stable/modules/feature_extraction.html#text-feature-
	extraction
	More online resources and possible topics for discussion
	Prof Andrea Goldsmith: Can machine learning trump theory
	in communication system design?
	https://www.youtube.com/watch?v=7L4PHaYP604
	Configuring MIMO Communication Links with Machine
	Learning
	https://www.youtube.com/watch?v=98cQb1B2sks
	Machine Learning for Wireless [Wireless Future Podcast]
	https://www.youtube.com/watch?v=Mx-z6KQPJJc
	Introduction to New Media
	https://www.youtube.com/watch?v=XzCTAHM81hc
	Artificial intelligence & interpersonal communication
	(Lecture 6 INTRO COURSE AI in COMMUNICATION)
	https://www.youtube.com/watch?v=t_fduq7SY7I
	• Artificial intelligence & the future of communication (Lecture
	7 INTRO COURSE AI in COMMUNICATION)
	https://www.youtube.com/watch?v=3tIW6o08dl8
	Artificial intelligence and the media (Lecture 4 INTRO
	COURSE on AI IN COMMUNICATION)
	https://www.youtube.com/watch?v=fRTaZz_EuzM
	How does artificial intelligence influence communication?
	(Lecture 3 INTRO COURSE AI/COMMUNICATION)
	https://www.youtube.com/watch?v=ZoFnkcmYtvs
	• The Role of Deep Learning in Communication Systems -
	https://www.youtube.com/watch?v=vG2oyXECG-8

Lesson 4: The effects of artificial intelligence in communication

Setting	Online or in classroom
Duration:	Classroom: 15h
	Lecture: 6h; practice/individual work 9h.
	Online: 15h
	Lecture: 4h; practice/individual work 11h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning,)

Setting	Online or in classroom
	using "Who knows about" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are understood, use practical examples and ask open questions to ensure the basics and the vocabulary are understood. Online: Make sure the fundamental technical elements are understood, use practical examples and ask open questions to ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate understanding/assessment	Online: Start online debate on topics like "How does ML influence the workplace?" or "Is ML the solution for anything?". Classroom: Initiate a debate around topics like "How does ML influence the workplace" or "Is ML the solution for anything?".
Closing activities	Summarize the main key elements learned and provide common feedback based on learner inputs; focusing on the essentials of ML technology.
Resources	 Paper, pencil, board. If possible computer classroom for individual exercises. More online resources and possible discussion topics: "Artificial Intelligence and the Future of Work" Andy Chan TEDxStLawrenceU https://www.youtube.com/watch?v=bScAMuegX7Y AI & The Future of Work Volker Hirsch TEDxManchester https://www.youtube.com/watch?v=dRw4d2Si8LA What Are The Negative Impacts Of Artificial Intelligence (AI)? - https://www.youtube.com/watch?v=P6vwNM_ecFk The future of AI: risks and challenges - https://www.youtube.com/watch?v=peGV0aNaTfg

7.6 LU6: Legislation

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "What EU regulations do you know for AI applications"
	questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like "What"s EU
	guidelines do you know about ML applications?".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analysing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.

Lesson 2: Bias in Machine learning

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine
	Learning) using "What you know about bias in ML" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate understanding/assessment	Online:

	Individual task: Encourage learners to read the use cases and to comment on their findings.
	Start a new topic in a forum with open questions like "What"s the bias in ML".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analysing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like "What"s the databias".
Closing activities	Summarize the main key elements learned and provide
	common feedback based on learner inputs; focusing on the
	essentials of ML technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.

Lesson 3: Software engineering for AI applications

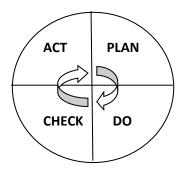
Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "What you know about bias in ML" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like "What"s the
	ML project lifecycle".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analysing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
	Initiate a debate around topics like "why it is important to have an
	ML project lifecycle?".
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML

	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.

Lesson 4: Data Value and Cost Models / Project management

Setting	Online or in classroom
Duration:	Classroom: 10h
	Lecture:4h; practice/individual work 6h.
	Online: 10h.
Lesson beginning	Assess the awareness of the group of learners (Machine Learning)
	using "What do you consider while selecting a data source" /
	"What is a data pricing" questions.
Engage/motivation	Classroom: Make sure the fundamental technical elements are
	understood, use practical examples and ask open questions to
	ensure the basics and the vocabulary are understood.
Whole group instructions	Yes.
Evaluate	Online:
understanding/assessment	Individual task: Encourage learners to read the use cases and to
	comment on their findings.
	Start a new topic in a forum with open questions like "What kind
	of data source do you know, what are the associated costs /
	constraints".
	Classroom:
	Individual task: Create groups of 3 or 4 individuals, each group
	analysing and commenting the use case, each learner in a group
	writing his own ideas and sharing them.
Closing activities	Summarize the main key elements learned and provide common
	feedback based on learner inputs; focusing on the essentials of ML
	technology.
Resources	Paper, pencil, board. If possible computer classroom for
	individual exercises.
Prerequisites	LU6 lesson 1

8 CONCLUSIONS


All activities described in the present document can be analyzed by the processes within an organization that carries out its activity in the field of training and evaluation of competences

Organization who functions as a training provider and at the same time performs the certification of acquired skills, it can implement the requirements of two standards: ISO 9001:2015 "Quality management systems — Requirements" and ISO/IEC 17024:2012: Conformity assessment — General requirements for bodies operating certification of persons.

Both standards have a process approach and can be applied by in a training provider and a certification center body.

In according with both standards, the quality management system for training and competency assessment providers is based on the PDCA cycle, which is a dynamic approach that can be carried out in each of the organization's processes as well as in the entire organization. Through the PDCA cycle, planning, implementation, control and continuous improvement of both the training and evaluation process are pursued. Continuous maintenance and improvement of process capability can be achieved by applying the PDCA concept at all levels of the organization.

Within a competence training and assessment organization, the process approach is structured as follows:

In the training process and in the certification of competentes proces the PDCA cycle has the following approach:

• "PLAN" -establishes the objectives and processes necessary to obtain results in accordance with the requirements of the beneficiaries of the training and competence assessment processes as well as with those of the organization

- "DO" -implements the processes of training and evaluation of competences; •
- "CHECK"- monitors and measures the training processes and objectives as well as • competence evaluation, analyzing the results obtained;
- "ACT"- applies actions for the continuous improvement of the performance of both the • training and competence evaluation processes

Any process of training and evaluation of competences must be permanently improved in order to be efficient.